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The e'~olutton of q u a n t u m  fluctuation.,  of a s~.alar field ~n de Sit ter space 1., analyzed m tile 
u ) n t c \ I  of the nev, mflat~onar',  sc_enar.) "I he d u r a t . m  of the mflat.)nar~, phase  v, ,2,.tlllla.tcd and 
the p rob lem of denslt ' ,  p e r tu rbahons  resul t ing from q u a n t u m  f luctuat ions  of the lhgg ' ,  field is 

,.h so. us.,cd 

I. Introduction 

The inf la t ionary  cosmological  model  [1] assumes a f i rs t -order  phase  t ransi t ion in 

which the umverse  supercools  and passes through a de Sitter per iod of  exponent ia l  

expansion.  If the xnflatlonary phase  is sufficiently long, this model  can give a natural  

solut ion to the horizon,  flatness and monopo[e  p rob lems  Inltmll 3, it ~as  not clear 

how to end inf la t ion and get back to a r ad l aUon-dommated  universe. Assuming  a 

" ' no rma l"  f i rs t -order  phase t ransi t ion occurr ing through bubble  nucleat ion and 

coalescence,  Gu th  [1] and Gu th  and Welnberg  [2] have shown that st leads to a 

strongls, i nhomogeneous  pic ture  of  the universe. Recently.  Llnde [3] and Albrecht  

and  Ste lnhard t  [4] have suggested that this p rob lem can be avoided in Co leman-  

Welnberg  type models,  in which the barr ier  m the effective potent ia l  d i sappears  or 

becomes  very small  as the t empera tu re  goes to zero. At  some tempera tu re  T,  the 

false vacuum Is des tabi l ized  by thermal  or quan tum fluctuat ions,  and the Hlggs field 

q5 star ts  " ro l l i ng"  down the effective potent ia l  while the unlver~' keeps expand ing  

exponent ia l ly .  The  C o l e m a n - W e l n b e r g  potent ia l  is very flat nca, the origin, and the 

rol lover  t ime can be much greater  than the expans ion  time, t i  ~, where t l  zs the 

Hubb le  cons tant  of  the de Sit ter  space. It IS expected that the initial scale of  spat ial  

• , a r l a t ion  of the Higgs field is - I I  ~, so that one can talk about  f luctuat ion region,, 

of  init ial  size - I1 1. If the rol lover t ime is greater  than ~ 50 H l then the whole 

visible universe is con ta ined  m one f luctuat ion region. Thl,, ne',~, version of Gu th  

cosmology ~s of ten called the new inf la t ionary  ~cenarlo 
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528 A VtlenAm / Quantumfluctuattons 

Destabilization of the false vacuum in the new inflationary universe, with quan- 

tum and gravitational effects taken into account, has been discussed in refs. [5-8]*. 

It has been shown that the symmetric state is destabilized much earlier than one 

would naively expect, due to anomalous behavior of fluctuations of a massless 

minimally coupled field in de Sitter space. For small values of ,#, the one-loop 

Coleman-Weinberg effective potential in de Sitter space has the form [11.10] 

v ( ~ )  = ~ m 2 ( T ) q ,  2 - {X,t, 4, (1.1)  

where r e ( T ) =  AgT  is the temperature-dependent effective mass due to interaction 
with gauge bosons, g is the gauge coupling. X = Bg41n(o/H),q~ = o is the true 

minimum of the effective potential, A and B are model-dependent constants. At the 

one-loop level, the symmetric state ( 0 ) =  0 remains quasistable at all nonzero 

temperatures. However, when re(T)  becomes sufficiently small, hlgher-ordcr correc- 

tions become important. 

The effective HIggs mass at (~ )  = 0 equals 

rn~f, = (V" (  eO)) = rn2( T ) - 3X( ,2) .  (1.2) 

The last term in eq. (1.2) is the contribution of the Hlggs field fluctuations. The 

infinities in (~2) can be absorbed by renormahzing the mass. m = m ( T  = 0), and the 

conformal parameter,/j. The renormahzed values of m and ( are assumed equal to 
zero. In fiat space-time (,~2) = 1T2  and X(q52) is always much smaller than m2(T)  
However, in de Sitter space the behavior of (~2) is quite different. As long as the 

fluctuations are not too large, one can use perturbation theory and calculate (~2) 

for a noninteractmg field (X = 0). Assuming that the de Sitter stage is preceded by a 

radiation-dominated Robertson-Walker expansion*" and representing (,#2) as a 

sum of thermal and vacuum contributions, 

one obtains [5, 81 

and [6.71 

(.62) = ('/'-~) t + ( , 2 ) , .  (1.3) 

T 2 H 2 

(q52) r--- ~ -  + 8~A~--g (1.4) 

( ~ 2 ) ~  _ H 3 t / 4 , / r 2  + C H  2. (1.5)  

* Hay,  k ing  a n d  Moss  [9] ha ' , e  ¢.onsldered a mode l  m which  tile l h g g s  field ha,, a small  mass ,  m > 0, ,,o 

tha l  the false ~at .uum r ema ins  qua ,qs tab le  d m s n  to zero  l e m p e r a m r e  a n d  deca, , s  b', q u a n t t n n  
t u n n e h n g  The  rollo'ver tune  r m the Hay, k i n g - M o s s  , < e n a n o  has  been  e, , tmlated in ref [10] [he re  it 

p, , ,hown that  a l t h o u g h  r d e p e n d s  on  m .  it c a n n o t  be m a d e  g rea l e r  than  - ( ~ I I )  i wheie  
c, ~ ~ 2 / 4 v ,  g is the g a u g e  c o u p h n g  

** O t h e r  b e g i n n i n g s  o f  the de  Sit ter  s tage ha~e also been  dis~.u,,,,ed in the l i t e ra tu re  [I5] 
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Here, C -  1 is a constant  and time t is set equal to zero at the beglnmng of the 

de Sitter stage. The temperature decreases like exp( - lit) ,  so that (02)-1- approaches 
a constant,  while (q,2), grows (This unusual behavior of (q~2), is explained in sect. 

3.) On the other hand, m2(T)  decreases like exp( - 2Ht),  at some point m~r f becomes 

negative and the symmetric  state is destabilized. For typical values of the parame- 

ters. this happens when (~z)  is not much different from tl  2. 
The purpose of  this paper is to analyze the evolution of quan tum fluctuations 

after the false vacuum is destabilized. Initially the fluctuations will grow according 

to eq. (1.5). When (q~2) grows sufficiently large, self-interaction becomes important ,  

and the behavior of  (,~)2 is modified. Finally, at some point a classical description of 

the field 0 becomes appropriate,  and the following evolution is described by the 

classical field equation. 
Eq. (1.5) has been obtained in refs. [6,7]. The derivation of  ref. [6] is rigorous but 

rather complicated,  while that of  ref. [7] is too sketchy. Since eq. (1.5) is important  
for the new inflationary scenario, I think It IS worthwhile to give a simple derivation 

of  this equation, which will emphasize its physical meaning. 

To include the effect of  self-interaction, one has to calculate (02)  as a function of 

time for the self-interacting field q~ in de Sitter space. Needless to say, this problem is 

not tractable exactly even in flat space-time, and one has to resort to approximate  

methods. An expansion in powers of ~. is not very interesting, since it breaks down 

when the fluctuations become large. We shall do a little better than that and 

calculate (~?)  in a self-consistent approxlmauon,  which amounts  to a summation of 

an infinite set of "cactus"  diagrams (cactus approximation).  
The paper is organized as follows The self-consistent approximat ion is introduced 

in sect. 2. Sect. 3 reviews the known results concerning quan tum fluctuations for a 

free scalar field in de Smer  space and gives a new derivation of  some re',ult~ using 

less rigorous but more intuitive methods These methods are used in sect. 4 to 

analyze the evolution of quan tum fluctuations in the new inflationary universe. In 

the same section, l estimate the rollo~,er time "r. The result is in a quahtat lve 

agreement with the estimation obtained by Lmde [7]. Sect. 5 discusses the problem 
of cosmological density fluctuations produced by the quantum fluctuations of the 

Hlggs field ¢, The results are summarized and discussed in sect 6. 

2. Self-consistent approximation 

Wc shall consider a quan tum field 0 described by the lagrangian 

2-  
(2 1) 

in de Sitter space. The absolute minimum of V(~) is at ~ = o >> H. The metric of  the 
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de Sit ter  space can be wri t ten as 

ds  2 = d r  2 - e x p ( 2 1 1 t ) d x  z (2 2) 

The  radius  of the de Sit ter  horizon is I1 i. We  shall d is regard  thermal  effects, ,,,ince 

they are un impor t an t  after  the false vacuum is des tabi l ized* Then the ( ' o l e m a n -  

Welnbe rg  potent ia l  for ~ << o is 

V ( 9 )  = - 'X ,¢  (2 3) 

and the field ~ satisfies the opera to r  equat ion  

121,;5 - X4, ~ = 0 (2.4) 

All  in format ion  we need about  the quan tum f luctuat ions is conta ined  in the Green  

funct ion 

G(x,  x') = ( r~(~- )~( .~ ' ) ) ,  (2 5) 

which satisfies the Dyson equat ion  

r iG(x,  x') + f ~ ' (  ",;, x")(. /( .~c", x ' ) ~ / -  g d4x '' = - 1 6 (  .x, x ' )  (2.6) 

Here,  27(x, x') is the self-energy par t  and the &func t ion  is normal ized  so that 

f S ( x ,  U ) v / - g d a x  ' = 1 .  (2V)  

To the first order  in the se l f -couphng X, s is given by the d iagram shown in fig la :  

221(x, x ' )  = - 37t(~52(x))8( v. x ' ) ,  (2 8) 

where  

( , f - (x) )  = Go(x. x) (2.9) 

and G o is the free field Green  function.  (~2)  and S i are, of course,  divergent  and  

should  be renormahzed  As expla ined  in ref. [6], the infini t ies in S 1 can bc abso rbed  

by renormal iz lng  the mass m and the conformal  pa rame te r  ,~ of the field ,~. (The 

" The effect,, of "'I tawkmg temperature" are included m the ,,acuum part of (~2) 
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a) ~ b) c ~  

I ~g 1 The self-energy {]lagrams (a) ul the fir,,/-order pcrturbatff}n thcor',, (b) ~n {.actu', appr(}xuTlat,on 

renormahzed values of  both ,,i and ,~ are assumed to be zero ) Subsutu tmg (2 8) in 

(2.6) we obtain, to first order m ~., 

[ZIG( ~, x") - 3tX<~2(x)>G(x, .~.") = - la(x. x'), {2 lO) 

To make our approximat ion self-consistent, we can define ({p2/x in terms of the 

full Green function G rather than Go: 

<~2(x)> = G ( x .  x) (2.11) 

Eqs. (2.10) and (2.11) with (¢2> properly renormallzed correspond to the summation 

of  an Infinite number  of "cactus"  self-energy diagrams of the form shown in fig lb. 

The "cactus"  approximat ion defined by eqs. (2 10), (2.11) is analogous to the 
Hartrce approximat ion used in many-body  theory. Fhe same class of  diagrams is 

included in the large-N approximation,  which has been studied b~ a number  of  

authors [12] for a model of N scalar fields ¢,~ with a quartic self-interaction A({~,,4,,, )2. 

It can be shown that the cactus diagrams give a leading contr ibution in the hmlt of  

large N. For  notauonal  s~mphclty 1 shall continue to d~scuss the model of one 

self-interacting scalar field, the whole analys~s can be easily reformulated for the 
case of  an N-component  field. For N = 1 we have no guarantee that the omitted 

diagrams are unimportant .  However, by including an infinite set of  dmgrams, we go 

beyond perturbat ion theory and one can hope that the results in cactus approxima- 

tion will reflect the qualitative behawor  of  the full nonlinear theory. 

Instead of  calculating the Green function G(x. x') from eqs. (2.10). (2.11), one can 

use an alternative procedure which I fred more illuminating. In the same approxima- 
tion the field operator  q}(x} can be represented as 

~ ( x ) = ( 2 ~ ' )  Vnfd~k[a,~,k(t)e'* "+h.c.], (2.12) 
where the mode functions ~ ( t )  satisfy the equation 

~ + 3H~k + k2e 2that ̀ - 3~<~2>~. = 0, 

and (q~2) is given by 

(~2>=(2~) ~fl¢~12d3k. 

(2.13) 

(2.14) 
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The p rob lem thus reduces to the so luuon  of the coupled  equat ions  (2.13), (2.14) A 

s imilar  system of  equa t ions  has been used xn ref. [10] to calculate  the effective 

potent ia l  in de S~tter space m the cactus app rox ima t ion .  

Yet  ano ther  v, ay of  formula t ing  the cactus  a pp rox ima t ion  is in terms of an 

ope ra to r  equatxon, 

Ulq, - 3,X(q}'-)~ = 0.  (2.15) 

Here I have omi t t ed  the m,  ~ and X r e n o r m a h z a u o n  countcr te rms,  which cancel  out  

the divergences  in (ca2). 

In the next sect ion we `shall dl`scuss the ca lcula t ion  of  (if2) for a free field Ca. This 

co r re sponds  to the f i rs t -order  app rox ima t ion  for the ,self-energy part ,  eqs. (2.8). (2.9). 

We  shall review the results ob ta ined  m refs. [5-8],  emphas iz ing  the special case 

rn = ~2 = 0 and rederlve some of  the results using le,ss r igorous but  more  intui t ive 

method,s. These  me thods  will then be used to analyze  the f luctuat ions in the cactus 

app rox ima t ion .  

3. A free scalar field in de Sitter space 

A free scalar  field of  mass m and conformal  coupl ing  ,~ ts descr ibed  by the 

equa t ion  

([] + m'- + ~R)q,= 0, (3 l) 

v, here R = 12H-' is the curvature  of the de Si t ter  space. The effccuve mass squared 

of the field is m 2 + ~R. For  m 2 + ~R > 0 the theory is s table  and for m 2 + ~'R < 0 it 

is uns table  ( that  is, the field has growing modes)  We ,shall pay special  a t ten t ion  to 

the in te rmedia te  case, m 2 +  ~R = 0. m which the behavtor  of the theory is very 

interest ing,  and  which is most relevant  for the mf l a uona ry  ,scenario. In the fol lowing 

I shall set ~ = 0 for s lmphct ty  The  dependence  on ~ can be recovered b~y replac ing 

m'- ~ rn 2 + ,~R everywhere.  

To calcula te  vacuum averages like (~2) ,  in curved space-t ime,  one has to specify 

what  is meant  by " v a c u u m " .  The  choice of  a vacuum m curved space- t ime ~s not 

unique,  reflecting the fact that there is no umque  division into posi t ive and negative 

frequency modes.  However ,  for a s table  theory (m 2 > 0) m a de Sit ter  space, there 

exists a unique de S~t ter- invanant  vacuum state, in which all the vacuum averages 

have the full symmet ry  of the de Sit ter  space. Bunch and Davies [13] (see also ref. 

[14]) have ca lcula ted  the expecta t ion  values of q,2 and of the ene rgy -momen tum 

tensor  T m this s tate The  divergent  par t  of (,¢,2) has the form A + B R .  where A 

and B are infini te eon`stants. These  infinit ies can be abso rbed  by the r e n o r m a h z a u o n  

of m and ,~. In the case of  small  mass (m << H) ,  v, hich is of most  interest  to us, the 

finite par t  of (q,2) m the Bunch-Davies  vacuum is [6,7] 

3H 4 
(qb2)BD 8'/rzm 2 + O ( 1 1 2 ) .  (3.2) 
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The vacuum energy-momentum tensor is given by [13] 

= ¼ ,,, 2( , 2  ) g , ,  . ( 3 .3 )  

If  the vacuum state is not  de Sitter invanant ,  it can be shown [6] that (@2) and (Tu,) 
approach  the de Sitter-mvariant values (3.2). (3.3) on a time scale - t t / r n  2 and 

- H 1 respecuvely. In other words, all excitauons over the Bunch-Davies vacuum 

are redshifted away. 
In the lirmt m--* 0, (q~2)B D m eq. (3.2) dwerges. This infrared divergence artses 

even in the pomt-sht ted expression (@(x)qS(X'))B D, indicating that a de Sltter- 
m v a n a n t  vacuum state does not exist for a massless, mimmally  coupled (~ = 0) field. 

If we set t = 0 at the beginning of  the de S~tter phase, then it can be shown that, for 

t > > H  1, (02)  ls given by [6, 7] 

(q?) = A + H3t/aTr 2, (3.4) 

where A = const. 
To unders tand this unusual behavior of (~2),  we have to analyze the behavior of 

the mode funcuons  +k( t )  m de S~tter space. For  a massless, minimally coupled field, 

the mode functions are given by 

~k~ ( t ) ( ~ r )  1/2 = HG(k,7) ] , (3.5) 

where rt = - H  -~e- m 1c212 _ icll2 = 1 and HJX/)2(x), HJZ/~(x) are Hankel functions, 
t t~2(x)  = [H3~)~(x)] * =  -(2/~rx)l/2e '~(1 + 1~ix). The wavelengths of the modes 

grow hke e m, 

h = k  l exp (Ht ) .  (3 6) 

In flat space-time we would define q,a(t) to be posluve frequency functions. In an 

expanding umverse, it makes sense to talk about  posmve  and negative frequencies 

only for the modes with wavelengths much shorter than the horizon, which go 

through many  oscii lauons during one expansion time. In our case such are the 

modes with kl'q] >> 1 and " ' ( 2 ) ( k . q )  ' M O ) t  rt3/2, ,.3/2~kr/) are the pos~twe and negative 

frequency functions, respectively. At  the beginning of  the de Sitter phase, t = 0, 

Ir/I = H ~, and we shall require that the coefficients c~(k) and c2(k)  m eq. (3.5) are 

such that c 2---1 and c l---0 for k > > H .  For  k < H ,  c I and c 2 depend on one 's  
assumptions  about  the initial state of  the universe and on the details of  the t ransmon 

to the de S~tter regime. 
The crucml observation is that the mode functions (3.5) approach nonzero 

constants  as t ---, oc. For  k >> H, 

Iq~12= ~ - S  1 + /~5e  2, ,  . (3.7) 

We see that the h m m n g  value HZ/2k  3 is reached when ke u, becomes smaller than 
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It, that is when the wavelength of the mode becomes greater than the de Sitter 
horizon, H -  i. In the course of  expansion, more and more modes come out of the 
horizon, their contr ibut ions add up to (q,2), and (if2) grows unboundedly.  

F rom eqs. (3.2), (3.3) we see that, unhke (,~2), (T~,) BI~ has a finite hmlt at m ~ 0: 

3H 4 
(L, ,)BD --" 32~2 g. .  (3.8) 

As in the case of m 2 > 0, ( T ~ )  in an arbitrary state approaches this limiting value 
on a nmescale - H 1. This difference between (~2) and (T~,,) is due to the fact 

that ( T ~ )  is not sensitive to the contr ibut ion of  very long wavelength modes. 

A rigorous derivation of  eq. (3.4) with proper  regularlzanon and renormallzatlon 

of  (q,2) has been given in ref. [6]. Here we shall rederlve this equation using simpler 

and more intuitive methods which, however, treat renormal lzauon in a rather 
cavalier fashion. 

The first approach is to calculate (if'-) from eq. (2.14) including only the 

contr ibut ion of  modes with wavelength greater than the horizon (since we know that 

these modes are responsible for the growth of (~,2)). Th~s means that the integration 

over k m (2.14) should be cut at k - He m. Then we can approximately replace ItPa I 2 
under  the integral by its limiting value. HZ/2k3:  

(q~2) = A  + 112 /;;cv, p(;;t) 1 H~t 
4~ " ~  ~;t k d/, = A + - -  (3 9) 4,n -2 

Here A = const is the contr ibution of modes with k < t l  (that is of the modes that 

had wavelengths greater than the horizon at thc beginning of  the de Sitter phase). 

The anomalous  growth of  fluctuations is a specml feature of the de Sitter space. If 

the expansion was slower than exponential  before t = 0. then the fluctuations at t = 0 
have no reason to be large, and one can expect that A _< H 2 

The ume dependence (q,2) cx t can be pictured as a brownlan motion of  the field 

¢;, As a result of  quantum fluctuations, the magnitude of  q, on the horizon scale 
changes by +_ ( H / 2 1 r )  per expansion time ( / /  1 ) Then the a~.erage "displacement"  
squared is (~2) = (H/2~r )2N,  where N = l t t  is the number  of "'steps". 

Eq. (3 4) can also be derived using the operator  equation for the field operator  ~. 
Let us first consider a massive field. 

Using this equation we find 

(a + me)~ , (x )  = o (3 lo) 

(17 + 2m2)(q) 2 ) = 2(q,.,ff " ) .  

For  rn > 0, (~2) = const and eq. (3.11) gives 

(~, , ,q~ " )  = r/.12(q~2) . 

(3 11) 

(3.12) 
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where I have used eq. (3.2). 
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(55 ,,55 ") = 3t t4 /8Tr  2 

o r  

For  a massless field 55 eq. (3.11) is 

2 " 4 "~ ~ 0  -~ ) 0,,55 5 = = 3 H  / 4 w -  

(d~2  + 3 H  d ( 5 5 2 ) = 3 H 4 / 4 7 r 2 .  

(It  is clear from the symmet ry  that ~7(55 2) = 0 ) The solutton of cq. (3.15) is 

(552) = A + B e  - wn + H~t /47r2 ,  

(3.13) 

(3.14) 

(3.15) 

(3 16) 

A ( r .  t )  = (2w) ~fl4,~(t)lZe '*'' X"d~k.  (3.18) 

For  k >> t i ,  1~[- '  is given b3, eq. (3.7). Omit t ing thc c o n t n b u n o n  of modes  ',~,~th 
k < 1t, we  obtain 

A ( r . t ) = ( 2 7 r )  2 f S ( l l 2 + k Z e  2m)s'n/tr/,r dkk (3.19) 

The  physmal distance between the points x and x '  is / =  r exp( l I t ) .  For r << 1t i 

where r = I x - x ' l .  can be written as 

I3.17) A(  r, t )  = (55( x ,  t )55( x ' ,  t ) ) ,  

in agreement  wnh (3.4). 

The  two methods  just  described wdl be used in the next section to analyze the 
growth of f luctuations m the cactus approximat ion .  

It is interesting to study the spatial correlat ions m the field 55(x, t). The expecta-  
tion value of 55 ts (55) = 0, indicating that 55 can grow in the positive or neganve 
dl rec tmn with equal probablhty .  However,  since the umverse  expands  exponentmlly.  
there are strong correlat ions between the values of  55 at points  separated by distances 
smaller  than H lexp(Ht) .  

The  correlat ion functmn 
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[that is, for 1 << H 
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t exp(Ht ) ]* :  

1 47r 2H3----~t(1-\ n,1 ) A ( r ,  t )  = --14~r 2 - - - -~  + - ~ , l n  HI . (3.20) 

The  first term m (3.20) is the usual,  f lat-space,  ze ro -pomt  f luctuat ion term. We see 

f rom eq. (3.20) that  for the &s tances  

H - l  << l<< H -  t e x p ( H t )  (3.21) 

and for Ht >> 1 the cor re lauon  funct ion is a slowly vary ing  funcuon of  l. This  means  

that  if we do  a measurement  of ,~ at two poin ts  separa ted  by a &s tance  in the range 

(3.21), the results will be the same with an accuracy - ( H t ) - t / 2 ( l n ( H l ) )  1/2. The 

cor re la t ions  g radua l ly  die  out  as we go to d is tances  - H texp(Ht ) .  In the b rownlan  

mot ion  picture,  the values of q5 at poin ts  separa ted  by 1 << H - l e x p ( l I t )  made  many  

b rownlan  s teps together  and  s tar ted  wander ing  away from one ano ther  only af ter  the 

co-moving  scale I came out  of the horizon.  

4. Growth of quantum fluctuations 

N o w  we shall use eqs. (2.13)-(2.15) to analyze  the growth  of qua n tum f luctuat ions  

m our  model  of a se l f - in teract ing scalar  field. Suppose  the false vacuum is destab~- 

hzed at  t = 0 and let us assume for s impl ic i ty  that  (~2)  = 0 at  that  moment .  (This 

co r r e sponds  to neglect ing the cons tan t  A m eq. (3.4).) Imt ia l ly  (~2)  wdi grow 

accord ing  to eq. (3.4). Then its growth will be accelera ted  by the negative effectwe 

mass  squared mc2ff = _ 3~(~2) .  Let us first cons ider  the imttal  stage of the evolut ton 

when 

(~2)  << H2/X, (4.1) 

so that Im~Zffl << H 2. Comparing the last two terms in eq. (2.13) we see that only the 
modes with wavelengths greater than the hortzon (k << He n') are destabdtzed 
dur ing  this stage, whtle the higher  m o m e n t u m  modes  are prac t ica l ly  unaffected.  Like 

m the previous  section, we shall  d is regard  the con t r ibu t ton  of  wavelengths  shorter  

than  the hor izon and write 

It can be checked that  

(dp2) = 2 ~  flilexp(th)l~b~]Zk2 dk. 

t~a ( t ) = ~b~°~( t )exp{-~ fi(dp2) dt ) • 

(4.2) 

(4.3) 

* Note that for r << H I the contribution of modes with k, < II to A (r, t) is thc same constant 4 that 
appcars m cq (3 9) This contribution is omitted m eqs (3 19), (3 20) 
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approximately  solves the mode equation (2.13), provided that the condit ions (4.1) 

and 

( d / d / ) ( q ) 2 )  << l_t((p2) (4.4) 

are sausfled*. Here ,/,~)) is the unper turbed (~. = 0) mode function and t,  is the time 
at which the wavelength of the mode becomes greater than the horizon, 

t a = n  t l n (k /H) .  (4.5) 

Finally. the integration in (4.2) is taken over modes with X > H ~, and we can 
approximate ly  replace Iq~°)l z by ItS hmmng  value, HZ/2k 3. 

Then eq. (4.2) gives 

(~2) = 41r-----S'l/ --~-exp ~ -  d t '  

H 2 f l i t  t , 
- 4~2 , ( ,  d z e x p { ~ - f  H , ( ~ 2 ( " ) )  dr '}  (4.6) 

where z = ln(k/H).  Differentiating (4.6) with respect to t, we obtain a differenual 
equat ion for (~2):  

d 2 H 3 2~ ~ 2 
~--] (~ )  = 4~r~ + ~ -  ((#-) . (4 7) 

The solution of this equat ion with the initial condit ion (~2)I t= t )=  0 is 

H 2 
(~2( t ))  - - -  tan X t , (4.8) 

where 

For  Xt << 1, 

X = ( ~ )  1/2'/T - ' t t .  ( 4 . 9 )  

(dp 2)  = H 3 t / 4 1 r  2 , ( 4 . 1 0 )  

* The  lower hml t  of  mtegraUon m eq (4 3) 1s chosen so that  ~b~ -- ~b~ °) for t - t~, reflecting the fact that  
the &fference  between G and ~b~ °~ is small  for modes  with '*avelcngth, ,  smaller  than  the hor izon Eq 
(4 3) apphe,,  for t > t~ 
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as expected. The solution (4.8) can also be written as 

where 

H2 c o t [ x  ( , )]  (4.11) 
( 4 ' 2 ) -  27r¢-5~ ' ~ ' -  " 

t o = rr /2  x = r r 2 ( 2 X )  - '  " " H  ' (4 12) 

At t = t 0 eq. (4.11) diverges, but our approximat ion breaks down earher For 

X ( t  o - t)<< 1 we can write 

I t  
(4 , : )  = 22~(r o -  r) " (4  13) 

Now It lS easll) seen that both condit ions (4.1) and (4.4) are sausfled if H ( t  o - t ) >> 1. 

F rom eqs. (4.3) and (4.8) we find the behavior of  the mode functions 

i+~l 2 _  H2 c o s x t  ~ 
2A ~ c o s x t  ( t > t ~ ) .  (4.14) 

Eq. (4.7) for (4,2) can also be derived using the operator  equation method From 

the operator  equation (2.15) we obtain 

E3(4, z ) = 2(4, ,,ep ") + 6~.(4,2 ) 2 . (4 15) 

For (4,2) << i t2/2~,  one can expect that (4,,,4,'") is approximately given by the free 

field expression (3.13), since we know that this quanti ty is not sensitive to the 

contr ibut ion of  long wavelength modes. Then 

(42 3 H  4 
- -  + 3H It(4, 2) = + 6~.(4,2) 2 . (4.16) 
d t  2 , 4 ~ r  2 

For (4,2),<,< H2/~, d / d t  << H, the second derivative can be neglected, and we 

obtain eq. (4.7). 
Although eq. (4.8) becomes inaccurate for large (4,2), it allows us to estimate the 

durat ion of  the inflationary phase. The exponential  expansion ends when (4,2) 
becomes - 0 2 .  where 4, = o is the true minimum of the effective potential. The 
approximat ion leading to eq. (4.8) breaks down for (4,2) > H 2 / k ,  when the growth 

of  fluctuations is faster than the expansion, and " ro lhng  down"  from (4,2) _ t12/)x 

to (4 ,2 )_  o2 takes no longer than - H  l (it can be shown that, in the cactus 
approximation,  (4,2) grows like ( r -  t) 2 for (4,2) >> H 2 / ) k ) .  This means that the 

rollover time r can be different from t o by no more than H ~, and thus 

" r= ,n '2 (2~ . ) - l /2H ] (4 17) 
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To have enough inflation, we need Hr >__ 50, and so X must satisfy the constraint  

X Z 0 02. (4.18) 

The accuracy of  eqs. (4.17). (4 18) depends on the accuracy of the cactus 
approximation.  The cactus approxHnauon ~s slmdar to the random phase approxi- 

mation, since it neglects correlations between different modes. One can expect, 

however, that at some point correlations become important  and the behavior of the 

field q5 becomes close to that of  a classical field, ~ .  A classical behavior of the 

fluctuatxons has been assumed b~ several authors [16 18] who haxe &scussed 
the density fluctuations in the new mflaUonar~ scenario. As long as ~ << H2/X,  the 

evolution of  the classical field is described by the equation 

d , 2X 4 
~ = ~f]q,2, (4.19) 

which has the solution 

ea~ = 311/2X( t , ; -  t ), (4.20) 

where to = const 

The ume t ,  at which the classmal evolutkm takes over will be estimated in the 

next secuon. Here we note that eq (4.8) ~s certainly correct up to first order in ~, 

and one expects that the Ume t ,  should be after the quadratic and higher terms in 

the expansion of (4.8) in powers of )~ become important.  For Xt ~ 1. the first two 
terms of th~s expansmn, 

H~t(1  Xl lZt  2 ') 
(qS2)=7--~\47r- + - - + 6 ~  2 "-- (4.21) 

give an accuracy of better than 15%. This m&cates  that 

t ,  ) X 1 (4 22) 

If we match the soluuons (4.8) and (4 20) at t = t , ,  we find 

Xt0 = X t ,  + ( 3 / ~ ' ) t a n  X t , .  (4.23) 

The rollover time r equals t~;, and we obtain from eqs. (4.22). (4.23) 

1.57 < X r < 1.61. (4.24) 

This differs from eq (4.17) by no more than 3%, in&catmg that eq. (4 17) gives a 
reasonable esumate  of the rollover time. 
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5. Generation of cosmological density fluctuations 

Eq. (4.17) estimates only the m e a n  value of the rollover time. The actual value of  -r 

can be different from (4.17) and can fluctuate in space. This is precisely the effect 

that gives rise to density fluctuations in the new inflationary universe [16-18]. If 6r~ 
is the f luctuauon of  -r on a scale characterized by wavenumber / , ,  then at the time 

when this scale re-enters the horizon [16-18] 

8 p i p  - H6"r~ . (5.1) 

8r,  can be found from 

6"i" k - 8ep~/+ (5.2) 

and [16] 

8 d & ( t )  = [ k 3 A ~ ( t ) ]  t /2 .  (5.3) 

Here, A , ( t )  is the Fourier t ransform of the two-point  correlation function (3.17), 

,a ,( t)= (2,,) 3f~a(x,t)e " Xd3x. (5.4) 

If  the evolution of  the field 4' is adequately described by classical field equations, 
then it can be shown that [16] 8 + k ( t ) e c  ~ ( t )  and r k IS independent  of t. Estimating 

6"r k from eqs. (5.2), (5.3) at the time when the galactic scale comes out of  the horizon. 

one finds for that scale 8 0 / p  - 50. This is five or six orders of magnitude too large. 

Things look more encouraging in the cactus approximation.  The fluctuation of  

in this approx lmauon  can be written as 

8eOk ( t ) = ( k / 2 1 r  )3/21q~ ( t )l . (5.5) 

From eqs. (4.8) and (4.14) we see that as t--* t o, the relative fluctuation of q~ 

approaches a small constant  value. 

(6q~,) 2 ¢'2X 
• - -  cos Xta. (5.6) 

(~,2) 8~r2 

It can be shown that this relation is approximately preserved at late stages of  the 
evolution when (qfl) > H 2 / X  (see the Appendix).  For ~qfl) - o 2, + m eq. (4 26) is 
-- ~ 1 / 2 0 2  and 

8~" k - cos X t ~ / 2 r r x l / a o .  (5.7) 
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For  sufficiently large scales, c o s  Xtk ~ 1 and 

6p~, H 

p 2 ,n-~l/4o • 
(5.8) 

With reasonable values of  the parameters,  eq. (5.8) gives ~pl, /p ~ 10 - 4 .  This is just 

the value needed for the galaxy formation! 

The trouble with this argument  is that the cactus approx imauon  neglects correla- 

tions between different modes and can hardly be trusted m the analysts of the 

fluctuattons of  ~'. The time t ,  at which the classical description takes over can be 
estimated in the following way. The field q, fluctuates with amphtude  - H on a 

timescale - H - i  and thus the fluctuation of  ,~ is 8,~ - H 2. (This follows also from 

eq. (3.13)). On the other hand, from eq. (4.19), the classical "ve loc i ty"  is given by 

~k = X q ~ / 3 H .  One can expect that the transition to the classical regime occurs when ,~ 

becomes greater than 8~, that is when 

(alp2)(/,) - )k- 2/3H2. (5.9) 

Assuming that t k < t ,  and evaluating 8"r k at t - t , ,  we fred* using eqs. (5.2). (5.6), 

(5.9) and (4.8) 

HS$t  - 8 e p k ( t , ) / H  >_. (2~ ' ) - s /2  _ 0.1.  (5.10) 

The denstty fluctuations are still too large. It is possible to obtain ~ p / p  - -  10 4 for 

t~ > t , ,  but this requires ridiculously small values of }, [16-18]. 

How can we save the inflationary universe? One possibility is to consider 
N-component  Higgs fields with N >> 1, in which case the cactus approxtmat lon may 

be rehable [12]. Perhaps a more attractive alternative is to consider particle models 

which give a different shape of the effective potentml at small ,~. The authors of  rcfs. 

[17,18] have pointed out that the density fluctuations can be made small if the 
effective potential is sufficiently flat somewhere m the range H << ~ << o. 

To  illustrate this possibility, suppose that for q> >__ q'l << o the effective potential 
has the form 

V(q,) = - lp2qfl (5.11) 

with #2 << H 2 and ~ > 0. A model with V(q~) like (5.1l) has been recently discussed 

by Dimopoulos  and Georgi [19]. We first note that V(4~) cannot  keep the form (5.11) 

*Eq (5 10) assumes that eq (48) apphes up to t - t ,  It Is po%lble, however, that there r, an 
intermediate regime when (~2) change,, from - H2/2~r~ 1/2 to - ,~ 2/~H2 In that case H6"r~ can be 
greater than given by eq (5 10) 
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up to ea - o, since otherwise the false vacuum (ff = 0) energy is 0, - 1/2202 and 

H 2= ~wGp, 4 # 202 ~2. a "tr ------g- << 
my 

Here  mp is the Planck mass and I have assumed that o << rap. In order to have 
~2 << H 2, V(q,) should have a big dip at q~ > ~&. (The model  of Ref. [19] does not 
sausfy this reqmrement . )  It will also be necessary to reqmre  that 

~1 >> I I 3 / t  "t2" (5.12) 

A race thing about  the model  (5.11) ~s that it describes a free field wtth a 
t achyomc mass  ~p,, 

(151- p 2 ) ,  = 0 ,  (5 13) 

and the mode  funcuons  can be found exactly [13,6]: 

q'h = ( ~Tr ) ' /~ HrlV2H,!2)( kTI) .  (5.14) 

Here  v/= - H - Xexp( - Ht)  and 

(9 p.2 ) 1/2 ~ -- I I ~  
= "  3 . =  (5.15) 

The asymptot ic  form of  q't at t >> t t  is 

I2p'2 t~)] (5 16) Iq~(t) l  2--- ( l l 2 / 2 k 3 ) e x p  ~ - ~ ( t -  , 

and analysis s lmdar  to that of the prewous  secuon g~ves 

3H a [ ] (q52) 80r2p, 2 exp ~ t ) - - !  - 1 . (5.17) 

We shall use eq (5.17) assuming that t is sufficiently large, so that  the exponcnual  m 
the square brackets  ,s much greater  than one. 

The  f luctuauon of the rollover Ume, 8"r~. can be esumated  from 

8"r~, - 3O~/cb, (5.18) 

where 6e& ls given by eq. (5.5) and q~ = ((q~,))1/2. 

" 3 ,,1/2 ~ , 
l l e x p ( -  ~a-q I (5 19) 
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We see that 80~/0 is small if the galactic scale comes out of the horizon at 
sufficiently late nine (t~ >> 3H/~2) .  If this happens when {4, 2) - 4,], then 

~ p / p  -- 0 I H 3//x24,1 , (5.20) 

and the fluctuations have the desired magnitude if 4,1 - 10~11~/# 2 
If V(~) becomes much steeper than (5.11) at 4, > 4,1. the rollover time is the time it 

takes to get from (4,2) = 0 to (4,2) _ 4,]: 

H'r ~ ( 3H2/#2  )ln( l ~ l / n  2 ) > (3H2/p f l ) In (H/ l~ ) ,  (5.21) 

where the last inequahty follows from the condition (5.12). The inflation is suffi- 

ciently large provided that H > 4p,. 

The conclusion is that, depending on the parameters of the model (5.11), 60 /0  can 
take practically any value, including the right one. Other forms of V(~) have been 
suggested in refs. [17, 18,20]. The effective potential used in refs. [18,20] is based on 
the geometric hierarchy model of Dlmopoulos and Raby [21]. This model can glve 

small density fluctuations, but probably falls to produce sufficient reheating [20]. In 
general, to produce small density fluctuations and efficient reheating, the effecm, e 
potential must have a rather special shape, and it is not clear whether such effecnve 
potential,, can be naturally obtained in realistic models. 

6. Conclusions 

In this paper we have discussed the physics of quantum fluctuations in de Sitter 
space for a simple model of a self-interacting scalar field, eqs. (2.1), (2.3). We have 
found the average "rollover" time in the new inflationary scenario: 

,r = q7.2(2~, ) i / 2  H 1 (6.1) 

This is in a quahtatlve agreement with the estimation obtained by Llnde [7J. (The 
difference is only in the numerical coefficient ) 

Requiring that the expansion factor, exp(Hr) ,  be sufficiently large ( H r  > 50). we 
obtain a constraint on X: 

~ . < 2 × 1 0 - 2  (62)  

A warning should be issued that, in general, the results of this paper are not 
dlrectl3 applicable to reahstlC gauge theories, even if the effective potential at small 

has the form (2.3). The reason is that the Hlggs fields in reahstlc theories are 
multi-component fields, and a potential like (2.3) is obtained by choosing some 
direction in the group space and suppressing other degrees of freedom This is all 
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right if one is mterested in the classical evolution of the field; however, for the 
analysis of quantum fluctuations one has to include all degrees of freedom. 

As an example, let us consider an O( N )-symmetric model 

L = ~3~,~.O~'ep. + l~k(q~aq~a)  2 , (6.3) 

where a = 1 . . . . .  N. If we pick some direcUon in the N-&menslonal q,-space, say, 

qa. = q~(X,0 . . . . .  0),  (6.4) 

then the Lagrangian for ~ takes the form of eqs. (2.1), (2.3). However, quantum 
fluctuations occur in all N components of %, and the equation corresponding to eq. 
(4.7) is 

d H 3 2A 
d-t (if2> = 4~r -----S + 3-H ( N + 2)(q~2> 2 . (6.5) 

Here (¢2) = N 1(%q~ ). The rollover time for this model is 

= -H- 2 ( N  + 2)X " 
(6.6) 

We note that if N is not too large, eq. (6.1) stdl gives a reasonably good 
order-of-magnitude estimate of r. For N = 10, ~" changes only by a factor of 0.5 Eq. 

(6.6) also suggests that taking into account the suppressed degrees of freedom wdl 
tend to decrease the magnitude of r. The single-degree-of-freedom effecuve potential 
for the standard SU(5) model has ~ - 0.5 [16], and we expect H~" < ~r2(2X) 1/2 - 10, 

which Is not enough. 
The analysis of the density perturbations resulting from the quantum fluctuauons 

of q~ gives, m the cactus approxlmaUon, 6 0 / 0 -  1 0 - a _  an answer one may be 
tempted to believe. However, the cactus approximation neglects important correla- 
uons between the modes and probably becomes unrehable for large values of (q52). 
The argument of sect. 5 suggests that the classical evolution takes over no later than 
when (,~) - )~- 2/~H2. This gives 8 p / p  >_. 0.1, and thus the density fluctuaUons are 
too large. To get around this difficulty, one can consider effectwe potentials of a 
&fferent shape. What  one needs [17,18] is an effecuve potenual which is sufficiently 
flat somewhere in the range H << ,b << o and has a big dip near q~ = o. The latter is 
required for efficient reheating [20]. 

I am grateful to Larry Ford for stimulating dtscussions. This work was supported 
in part  by the National Soence Foundauon under Grant  # PHY-8206202. 
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A p p e n d i x  

This appendix discusses the evolution of (q)2) when (02)  >> H2/2t m the cactus 

approximation.  In ttus regime the effect of  space-time curvature is negligible, and we 
can use the Mlnkowsky space d 'a lambert ian in eq. (4.15). The growth of (,~2) is due 

_. . ,2 ~1/2 where m~f t = - 37x(~2). We to unstable modes with wavelengths X > ( '"off* , 
shall assume that the dominant  cont r ibuuon  to (q,2) is gwen by the modes with 

>> ( _ mcrt2 )1/2; then 

(+2)  >> ( ( V ~ ) 2 ) .  ( A . I )  

With this assumpUon, eq. (4.15) takes the form 

d z 
d t  2 (q5 2) = 2 ( ¢  2) + 6 ~ ( 9 ~ 2 )  2 . (A.2) 

Taking the expectauon value of  the energy conservation law. T~., = 0. we obtain 

also 

(¢2)  _ ~ . (~2)2  = 2 E  = const .  (A.3) 

Eqs. (A.2) and (A.3) gwe the following equation for (qfl)" 

d 2 
dt  2 (q~2) = 92~(~2>2 + 4E .  (A.4) 

At large values of  (,~2) we can neglect the constant  4E;  then eq. (A 4) has a soluuon 

(~2> = 2 (A.5) 
3a ( /0  -- t)  2 " 

In the same approximation,  the mode functmns satisfy the equation 

4'k = 32'(q'2) ¢ ,  = 2(to - t ) - 2 ¢ ~ ,  (A.6) 

which has solutmns with ~k cx (t o - t) 2 and q'k cc (t o - t) -i. Thus, 

~b, = A k ( t  o -  t )  - I  + Bk( t  o -  t)  2. (A.7) 

and 

1~,[ 2 
- -  -~ const as t ~ t o . (A.8) 
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T h e  w e a k  p o m t  of  th i s  a n a l y s i s  is the  a s s u m p t i o n  ( A . I )  w h i c h  1 c a n n o t  n g o r o u ' , l ~  

justtf3, .  I h a v e  s t u d i e d  the  s a m e  p r o b l e m  t a k i n g  eq. (2.13),  (2 14) as a s t a r t i n g  p o m t ,  

w i t h  a n  a p p r o p r i a t e  c u t o f f  in t he  i n t e g r a l  o v e r / ~  T h e  re su l t  ts the  s ame ,  eqs.  (A ,5 )  

a n d  (A.8)  It s h o u l d  be  e m p h a s i z e d  t h a t  eqs.  (A .5 )  a n d  (A .8 )  a p p l y  o n l y  m the  c a c t u s  

a p p r o x i m a t i o n .  As  e x p l a m e d  in sect .  5. th i s  a p p r o x i m a t i o n  b e c o m e s  u n r e h a b l e  at  

l a rge  va lues  of  (q52). 
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