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The evolution of quantum fluctuations of a scalar field in de Sitter space 15 analvzed 1n the
context of the new inflatonary scenario The duration of the inflationary phase 1s estimated and
the problem of density perturbations resulting from quantum fluctuations of the Hhiggs field
discussed

1. Introduction

The inflationary cosmological model [1] assumes a first-order phase transition in
which the universe supercools and passes through a de Sitter period of exponential
expansion. If the inflationary phase 1s sufficiently long, this model can give a natural
solution to the honizon, flatness and monopole problems Initally 1t was not clear
how to end nflation and get back to a radiation-dominated universe. Assuming a
“normal” first-order phase transition occurning through bubble nucleation and
coalescence, Guth [1] and Guth and Weinberg [2] have shown that 1t leads to a
strongly inhomogeneous picture of the universe. Recently, Linde [3] and Albrecht
and Stemhardt [4] have suggested that this problem can be avoided in Coleman-
Weinberg type models, in which the barnier 1n the effective potential disappears or
becomes very small as the temperature goes to cero. At some temperature 7, the
false vacuum 1s destabilized by thermal or quantum fluctuations, and the Higgs field
¢ starts “rolling” down the effective potential while the univer< keeps expanding
exponentially. The Coleman-Weinberg potential 1s very flat new: the onigin, and the
rollover time can be much greater than the expansion ume, H ', where H s the
Hubble constant of the de Sitter space. It 1s expected that the imual scale of spatial
vanation of the Higgs field is ~ !, <o that one can talk about fluctuation regions
of imitial size ~ I{ ', If the rollover ime 1s greater than ~ 50 H ! then the whole
visible universe 15 contamed i one fluctuation region. This new version of Guth
cosmology 1s often called the new inflationary scenario
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528 A Vilenkin / Quantum fluctuations

Destabulization of the false vacuum in the new inflationary universe, with quan-
tum and gravitational effects taken into account, has been discussed 1n refs. [S-8]*.
It has been shown that the symmetric state 1s destabilized much earlier than one
would naively expect, due to anomalous behavior of fluctuations of a massless
minimally coupled field in de Sitter space. For small values of ¢. the one-loop
Coleman-Weinberg effective potential in de Sitter space has the form [11.10]

V(e)=1im*(T)¢* — iA¢*, (1.1)

where m(T )= AgT is the temperature-dependent effective mass due to interaction
with gauge bosons, g 15 the gauge coupling. A = Bg*In(o/H).¢ =06 15 the true
minimum of the effective potential, 4 and B are model-dependent constants. At the
one-loop level, the symmetric state (¢) =0 remains quasistable at all nonzero
temperatures. However, when m(7T) becomes sufficiently small. higher-order correc-
tions become important.

The effective Higgs mass at (¢) = 0 equals

mie= (V" () =m’(T) - 3A(¢"). (1.2)

The last term 1n eq. (1.2) 15 the contnibution of the Higgs field fluctuations. The
infinities 1n (¢?) can be absorbed by renormalizing the mass. m = m(7 = 0). and the
conformal parameter, £&. The renormalized values of m and § are assumed cqual to
zero. In flat space-ime (¢*) = 572 and A(¢?) is always much smaller than m*(T)
However. 1n de Sitter space the behavior of (¢?) 1s quite different. As long as the
fluctuations are not too large. one can use perturbation theory and calculate (¢°)
for a noninteracting field (A = 0). Assuming that the de Sitter stage 15 preceded by a
radiation-dominated Robertson-Walker expansion** and representing (6?) as a
sum of thermal and vacuum contributions,

(¢%) = (") 1 + (¢*),. (1.3)
onc obtains [5, 8]
o, IP . _H?
(D= 12 * 8nAg (1.4)
and [6.7]
(%), = H't/47> + CH*. (1.5)

* Hawking and Moss [9] have considered a model in which the Higgs field has a small mass, m > 0, 5o
that the false vacuum remains quasistable down to zero temperature and decavs by quantum
tunncling The rollover time 7 1n the Hawking-Moss scenario has been estimated 1nref [10] There 1t
15 shown that although 7 depends on m., 1t cannot be made greater than ~ (aff) ' where
a = ¢ /47, g the gauge coupling

** Other beginnings of the de Sitter stage have also been discussed 1n the hiterature [15]
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Here, C ~ 1 15 a constant and ume ¢ 1s set equal to zero at the beginning of the
de Sitter stage. The temperature decreases hke exp(— Hr). so that (¢? ), approaches
a constant, while (¢?), grows (This unusual behavior of (¢%), 1s explained 1n scet.
3.) On the other hand. m?(T) decreases like exp(— 2 Hr), at some point m becomes
negative and the symmetric state 1s destabilized. For typical values of the parame-
ters. this happens when (¢7) 1s not much different from H2.

The purpose of this paper 1s to analyze the evolution of quantum fluctuations
after the false vacuum 1s destabilized. Initially the fluctuations will grow according
to eq. (1.5). When (¢?) grows sufficiently large, self-interaction becomes important,
and the behavior of (¢)? 1s modified. Finally. at some point a classical description of
the field ¢ becomes appropnate, and the following cvolution 1s described by the
classical field equation.

Eq. (1.5) has been obtained 1n refs. [6,7]. The derivation of ref. [6] 15 ngorous but
rather complicated. while that of ref. [7] is too sketchy. Since eq. (1.5) 15 important
for the new inflationary scenario, I think 1t 1s worthwhile to give a simple derivation
of this equation. which will emphasize 1ts physical meaning,

To include the effect of self-interaction, one has to calculate (¢ as a function of
ume for the self-interacting field ¢ 1n de Sitter space. Needless to say. this problem 15
not tractable exactly even in flat space-time. and one has to resort to approximate
methods. An expansion in powers of A 15 not very interesting, since 1t breaks down
when the fluctuations become large. We shall do a lhittle better than that and
calculate (¢ ) in a self-consistent approximation. which amounts to a summation of
an infinite set of “cactus’ diagrams (cactus approximation).

The paper 1s organized as follows The self-consistent approximation 1s introduced
n scet. 2. Sect. 3 reviews the known results concerning quantum fluctuations for a
free scalar field in de Sitter space and gives a new derivation of some results using
less nigorous but more intuiive methods These methods are used 1n sect. 4 to
analyze the evolution of quantum fluctuations 1n the new inflationary universe. In
the same section, 1 estimate the rollover tuime 7. The result 1s 1n a qualitative
agreement with the estimation obtained by Linde [7]. Sect. 5 discusses the problem
of cosmological density fluctuations produced by the quantum fluctuations of the
Higgs ficld ¢ The results are summanzed and discussed 1n sect 6.

2. Self-consistent approximation

We shall consider a quantum ficld ¢ described by the lagrangian

o=1(0,0) - V(). (21)

in de Sitter space. The absolute minimum of V(¢)1s at ¢ = ¢ > H. The metric of the
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de Sitter space can be written as

ds®=dr? —exp(2Ht)dx* (

2
3%

The radius of the de Sitter horizon 1s /', We shall disregard thermal effects. since
they are unmimportant after the false vacuum 15 destabihized® Then the Coleman-
Weinberg potential for ¢ < 015

and the field ¢ satisfies the operator equation
O¢—Ap' =0 (2.4)

All information we need about the quantum fluctuations 1s contamed in the Green
function

G(x,x)={Top{x)o(17)). (25)

which satisfies the Dyson equation
OG(x.x")+ /2( X xYG(x". .\")\/—g d*x” = —18(x. x") (2.6)
Here, 2(x, x’) 15 the self-energy part and the 8-function is normalized so that

f8(,\'. )Y —gdiv=1. 2n

To the first order in the self-coupling A, 2 1s given by the diagram shown n fig la:

Z(x.x) = =3A(SH(x)H(v. x), (28)
where
(6(x)) = Gyl(x. x) (29)

and G, 1s the free ficld Green function. {(¢*) and X, are, of course. divergent and
should be renormalized As explained in ref. [6], the infinities in X, can be absorbed
by renormalizing the mass m and the conformal parameter £ of the field ¢. (The

* The effects of * Hawking temperature™ are included in the vacuum part of (¢2)
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g | The self-energy dragrams (a) in the first-order perturbation theory, (b) n cactus approvimation

renormalized values of both m and ¢ are assumed to be zero ) Substituting (2 8) 1n
(2.6) we obtain. to first order in A,

OG(x. ¥') = 3N (x DG (x. x)= —18(x. x'). (2 10)

To make our approximation self-consistent. we can define (¢?) in terms of the
full Green function G rather than G,:

(¢*(x))y =G(x.x) (2.11)

Egs. (2.10) and (2.11) with ($*) properly renormalized correspond to the summation
of an mfinite number of “cactus” self-energy diagrams of the form shown in fig 1b.

The “cactus™ approximation defined by egs. (2 10), (2.11) 15 analogous to the
Hartree approximation used in many-body theory. The same class of diagrams 1s
included in the large-N approximation. which has been studied by a number of
authors [12] for a model of N scalar fields ¢, with a quartic self-interaction A(¢,¢,)".
It can be shown that the cactus diagrams give a leading contribution in the hmit of
large N. For notational simplicity I shall continue to discuss the model of one
self-interacting scalar field, the whole analysis can be easily reformulated for the
cas¢ of an N-component field. For N =1 we have no guarantce that the omitted
diagrams are umimportant. However, by including an infinite set of diagrams, we go
beyond perturbation theory and one can hope that the results in cactus approxima-
tion will reflect the qualitative behavior of the full nonlinear theory.

Instead of calculating the Green function G(x. x") from eqs. (2.10). (2.11). onc can
use an alternative procedure which I find more illuminating. In the same approxima-
tton the field operator ¢(.x) can be represented as

o(x)=(27) ‘/Z/d‘k[aupk(z)e'*X+h.c.]. (2.12)

where the mode functions ¥, () satisfy the equation

Y+ 3HY, + ke MY~ 3N, =0, (2.13)
and (¢*) 15 given by
($7) = (27) " [y, 17 d%. (2.14)



532 A Vilenkin / Quantum fluctuations

The problem thus reduces to the solution of the coupled equations (2.13). (2.14) A
similar system of equations has been used in ref. [10] to calculate the effective
potential in de Sitter space n the cactus approximation.

Yet another way of formulaung the cactus approximation 1s i terms of an
operator cquation,

O¢ — 3A(¢* ) =0. (2.15)

Here I have omitted the m, € and A renormahzation counterterms. which cancel out
the divergences in (¢%).

In the next section we shall discuss the calculation of (¢?) for a free ficld 6. This
corresponds to the first-order approximation for the sclf-energy part, egs. (2.8). (2.9).
We shall review the results obtained in refs. [5-8], ¢emphasizing the special case
m=§¢ =10 and redenve some of the results using less rigorous but more intuitive
methods. These methods will then be used to analyze the fluctuations 1n the cactus
approximation.

3. A free scalar field in de Sitter space

A free scalar field of mass m and conformal coupling § 15 described by the
equation

(O+m?+£&R)op=0. (31)

where R =12H? 15 the curvature of the de Sitter space. The effective mass squared
of the field 1s m? + £R. For m*> + £€R > 0 the theory 1s stable and for m* + £R < 0 1t
1s unstable (that 1s. the field has growing modes) We shall pay special attention to
the termediate case, m* + £R =0. i which the behavior of the theorv 15 very
interesting, and which 1s most relevant for the inflationary scenarnio. In the following
[ shall set £ =0 for simphcity The dependence on § can be recovered by replacing
m? — m? + £R everywhere.

To calculate vacuum averages like (¢*), in curved space-ime, one has to specify
what 1s meant by * vacuum”. The choice of a vacuum 1n curved space-time 1s not
unique, reflecing the fact that there 1s no unique division mnto positive and negative
frequency modes. However, for a stable theory (m® > 0) 1n a de Sitter space, there
exists a unique de Sitter-invanant vacuum state, in which all the vacuum averages
have the full symmetry of the de Sitter space. Bunch and Davies [13] (sce also ref.
[14]) have calculated the expectation values of ¢* and of the energy-momentum
tensor T, 1n this state The divergent part of (¢*) has the form 4 + BR. where A4
and B are infinite constants. These infinities can be absorbed by the renormalization
of m and &. In the case of small mass (m < H), which 1s of most interest to us, the
finite part of (¢*) in the Bunch-Davies vacuum is [6,7]

3H4

(¢ ) gy = PYETNE +O(H?). (3.2)
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The vacuum energy-momentum tensor is given by [13]
<7;J.V>BD= %m2<¢2>g;w' (33)

If the vacuum state is not de Sitter invariant, 1t can be shown [6] that (¢*) and (T,,)
approach the de Sitter-invariant values (3.2). (3.3) on a time scale ~ H/m? and
~ H !, respectively. In other words, all excitations over the Bunch-Davies vacuum
are redshifted away.

In the limit m — 0, (¢*)yp 1n eq. (3.2) diverges. This infrared divergence arises
even 1n the point-shtted expression ($(x)¢(x"))gp, indicating that a de Sitter-
invanant vacuum state does not exist for a massless, minimally coupled (£ = 0) field.
If we set t = 0 at the beginning of the de Sitter phase, then it can be shown that, for
r> H ' (¢*) 1s given by [6,7]

(') =A+H'1/4n?, (3.4)
where A = const.
To understand this unusual behavior of (¢}, we have to analyze the behavior of
the mode functions ¥, (7) 1n de Sitter space. For a massless, mimmally coupled field,
the mode functions are given by

1/2 2
Y (1) =(im) / H7I3/2[01H3(})2(k71)+C2H3(})2(k71)] ) (3.5)

wheren = —H e " |c,)? = |¢,|* = 1 and H{}(x), H{?,(x) are Hankel functions,
HE (x)=[H3)(x))* = —(2/mx)% “*(1 +1/ix). The wavelengths of the modes

grow like e’”’,

X=k ‘exp(Ht). (3 6)

In flat space-time we would define ¥, () to be positive frequency functions. In an
expanding umiverse, it makes sense to talk about positive and negative frequencies
only for the modes with wavelengths much shorter than the honzon, which go
through many oscillations during one expansion time. In our case such are the
modes with k|| > 1 and H{?(kn), H{))(kn) are the positive and negative
frequency funcuons, respectively. At the beginning of the de Sitter phase, t =0,
Im| = H ', and we shall require that the coefficients ¢,(k) and ¢,(k) 1n eq. (3.5) are
such that ¢; =1 and ¢, =0 for k> H. For k <H, ¢ and ¢, depend on one’s
assumptions about the initial state of the universe and on the details of the transition
to the de Sitter regime.

The crucial observation 1s that the mode functions (3.5) approach nonzero
constants as t = oc. For k> H,

HX [ k2
|\{/A|2=m(1+me 2"). (37)

We see that the miting value H2/2k?* 1s reached when ke /' becomes smaller than
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H, that 1s when the wavelength of the mode becomes greater than the de Sitter
horizon, H ~'. In the course of expansion, more and more modes come out of the
horizon, their contributions add up to (¢?). and (¢?) grows unboundedly.

From egs. (3.2), (3.3) we see that, unhke {¢?), (T, s has a fimte hmut at m — 0:

3H?
<7;u'>BD_, Eguy (38)

As 1n the case of m* >0, (T, in an arbitrary state approaches this hmiting value
on a timescale ~ H '. This difference between (¢*) and (T,,) 15 due to the fact
that (7., ) 1s not sensitive to the contribution of very long wavelength modes.

A nigorous derivation of eq. (3.4) with proper regularization and renormalization
of (¢?) has been given in ref. [6]. Here we shall rederive this equation using simpler
and more intuitive methods which, however, treat renormalization 1n a rather
cavalier fashion.

The first approach is to calculate (¢*) from eq. (2.14) including only the
contribution of modes with wavelength greater than the horizon (since we know that
these modes are responsible for the growth of (¢?)). This means that the integration
over k 1n (2.14) should be cut at k ~ He’"". Then we can approximately replace AR
under the integral by its hmiting value. H?/2k*:

HY%

3

k 'dh=4+

H 4o

112 fllcxp(ll{) (3 9)

(o) =4+ 47
Here A4 = const 15 the contribution of modes with & < H (that 15 of the modes that
had wavelengths greater than the horizon at the beginning of the de Sitter phase).
The anomalous growth of fluctuations 15 a special feature of the de Sitter space. If
the expansion was slower than exponential before t = 0. then the fluctuations at t =0
have no reason to be large, and one can expect that 4 < H*

The time dependence (¢?) & ¢ can be pictured as a brownian motion of the field
¢ As a result of quantum fluctuations, the magnitude of ¢ on the honizon scale
changes by +(H /27 ) per expansion time (#/ ') Then the average “displacement”
squared 1s (¢*) = (H/2m)>N, where N = Ht 15 the number of “steps™.

Eq. (3 4) can also be derived using the operator equatien for the field operator é.
Let us first constder a massive field.

@O+m3)e(x)=0 (3 10)
Using this equation we find
(O+2m*){(¢*) =2(¢p 0 "). (311)

For m >0, (¢?) = const and eq. (3.11) gives

(o, =m(¢"). (3.12)
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In the hmit m -0
($.9")=3H*/87", (3.13)

where I have used eq. (3.2).
For a massless field ¢ eq. (3.11) 1s

O(¢°) = 2{¢ ") = 3H* /47" (3.14)
or

& L DN

(d’2 +3Hdl)<¢ )= 3H*/4n>, (3.15)

(It s clear from the symmetry that V(¢3> = 0) The solution of eq. (3.15) 15

$’Y=A+Be My HY 472, (3 16)
/

1n agreement with (3.4).

The two methods just described will be used in the next section to analyze the
growth of fluctuations in the cactus approximation.

It 1s interesting to study the spatial correlations in the field ¢(x, 7). The expecta-
uon value of ¢ 1s (¢) = 0, indicating that ¢ can grow in the positive or negative
direction with equal probability. However, since the universe expands exponentially.
there are strong correlations between the values of ¢ at ponts separated by distances
smaller than H 'exp( Ht).

The correlation function

A(rt)y=(o(x ) o(x" 1)), (3.17)

where r = |x — x’|. can be written as
A(r.t)=(2m) ’f|¢A(z)|3e'*'x 1dk . (3.18)

For k> H. |y,|? 1s gven by eq. (3.7). Omitting the contribution of modes with
k < H, we obtain

A(r.t)=27) 2f’°(112+/\—2e 3"')M% (3.19)

I7i kr k

The physical distance between the points x and x’ 15 /= rexp(Hr). For r< H !
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[that is, for / < H lexp(Hr)]*:

1 H3t 1
A(r0)= o + m(1 - —in HI). (3.20)
The first term 1n (3.20) is the usual, flat-space, zero-point fluctuation term. We see
from eq. (3.20) that for the distances

H ' << H 'exp(Ht) (3.21)

and for Ht > 1 the correlation function is a slowly varying function of /. This means
that if we do a measurement of ¢ at two points separated by a distance in the range
(3.21), the results will be the same with an accuracy ~ (Ht) ™ '/*(In(H!))'/*. The
correlations gradually die out as we go to distances ~ H 'exp( Ht). In the browman
motion picture, the values of ¢ at points separated by / < H ~'exp( Hr) made many
browman steps together and started wandering away from one another only after the
co-moving scale / came out of the horizon.

4. Growth of quantum fluctuations

Now we shall use egs. (2.13)-(2.15) to analyze the growth of quantum fluctuations
in our model of a self-interacting scalar field. Suppose the false vacuum 15 destabi-
lized at r =0 and let us assume for simplicity that (¢?) =0 at that moment. (This
corresponds to neglecting the constant 4 1n eq. (3.4).) Imtally (¢?) will grow
according to eq. (3.4). Then its growth will be accelerated by the negative effective
mass squared m2; = —3A(¢?). Let us first consider the imitial stage of the evolution
when

($?Y < HP/A, (4.1)

so that |m2,| < H?2. Comparing the last two terms in eq. (2.13) we see that only the
modes with wavelengths greater than the honzon (k < He') are destabilized
during this stage, while the higher momentum modes are practically unaffected. Like
in the previous section, we shall disregard the contribution of wavelengths shorter
than the horizon and write

9 1 Hexp(Hrty 272
)= T k-dk. 4.2
W=/l (42)
It can be checked that
A e
w0 = (exo| 37 [(oh . (4.9

* Note that for r << H ! the contribution of modes with & < [ to A(r. 1) 1s the same constant 4 that
appears mn ¢q (39) This contnbution 15 omutted ineqs (3 19), (320
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approximately solves the mode equation (2.13). provided that the conditions (4.1)
and

(d/de)(¢*) < H{¢*) (4.4)

are satisfied*. Here ¢ 1s the unperturbed (A = 0) mode function and 7, 1s the time
at which the wavelength of the mode becomes greater than the horizon,

t,=H ‘In(k/H). (4.5)

! and we can

Finally. the integration 1n (4.2) is taken over modes with X > H
approximately replace |¢\”|? by 1ts imiting value, H?/2k".

Then eq. (4.2) gives

2\ — }12 Ilcxp(lll)g_ﬁ Q 9., ,\

==/ kP [@ar)
_HE e {Qf’ <¢2(z')>dz'} (4.6)
472y P\H "o ’ ’

where z = In(k/H ). Differentiating (4.6) with respect to ¢, we obtain a differential
equation for (¢?):

d H? 2A
a~,<¢2>=m+ﬁ<¢'>2- (47)

The solution of this equation with the imtial condition (¢?)|,_,=01s

HZ
($(1)) = 2ayax AR XL (4.8)
where
x=(A) 271, (4.9)
For xt < 1,
(¢?) = H’t/4n?, (4.10)

* The lower Limit of integration in eq (4 3) 1s chosen so that ¥, = {® for 1 ~ ¢, reflecting the fact that
the difference between ¢, and ¢’ 15 small for modes with wavelengths smaller than the horizon Eq
(4 3) applies for > ¢,
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as expected. The solution (4.8) can also be written as

5

H-
27V2A

(¢*) = cot| x (1, —1)] . (4.11)

where
t0=7r/2x=772(2)\)_l/2H ! (4 12)
At t=1, eq. (4.11) diverges. but our approximation breaks down earher For

x(t, —t)<< 1 we can write

H

N 413
<¢ > 2>\(’() - t) ( )
Now 1t 15 easily scen that both conditions (4.1) and (4.4) are satished f H(z, — 1) > 1.

From eqs. (4.3) and (4.8) we find the behavior of the mode functions

H? cosxt,
243 cosxt '

(r>1,). (4.14)

Eq. (4.7) for (¢*) can also be derived using the operator equation method From
the operator equation (2.15) we obtain

(™Y =2(¢ 9" + 6A(P™ ). (4 15)

For (¢?) < H?/A. one can expect that (¢ ¢ ) 1s approximately given by the free
field expression (3.13), since we know that this quantity 1s not sensitive to the
contribution of long wavelength modes. Then

3HY
477

2
( d° 3 d (¢?) = + 6A(¢*)7. (4.16)
de? dr

For (¢*) < H?/\, d/dt < H. the second derivative can be neglected. and we
obtain ¢q. (4.7).

Although eq. (4.8) becomes inaccurate for large ($?). 1t allows us to esumate the
duration of the inflationary phase. The exponential expansion ends when (%)
becomes ~ o2, where ¢ = ¢ 15 the true mimmum of the effective potential. The
approximation leading to eq. (4.8) breaks down for {(¢*) > H*/A, when the growth
of fluctuations is faster than the expansion. and “rolling down” from (¢?) ~ H?/A
to (¢°) ~ a? takes no longer than ~ H ' (it can be shown that. in the cactus
approximation. {¢?) grows like (7 — 1) ? for (¢?) > H?/N). This means that the
rollover ime 7 can be different from ¢, by no more than H ', and thus

Tz'n'z(Z)\)_l/zH ! (417)
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To have enough inflation, we need H7 > 50. and s0 A must satisfy the constraint
A<002. (4.18)

The accuracy of eqs. (4.17). (418) depends on the accuracy of the cactus
approximation. The cactus approximation 1s similar to the random phase approxi-
mation, since 1t neglects correlations between different modes. One can expect,
however, that at some point correlations become important and the behavior of the
field ¢ becomes close to that of a classical field. ¢_. A classical behavior of the
fluctuations has been assumed by several authors [16 18] who have discussed
the density fluctuations in the new inflationary scenario. As long as ¢7 < H- /A, the
evolution of the classical field 1s described by the equation

d »_2Ar ,
dl‘:)g_ 311‘1’;‘ (4‘19)
which has the solution
& =3H /2N (1) —1). (4.20)

where 1, = const

The time 7, at which the classical evolution takes over will be estimated 1n the
next section. Here we note that eq (4.8) 15 certainly correct up to first order n A,
and one expects that the time ¢, should be after the quadratic and higher terms n
the expansion of (4.8) in powers of A become important. For xz < 1. the first two
terms of this expansion,

2 =—ll+ + .- 421
(@ Y SR 67’ ( )

give an accuracy of better than 15%. This indicates that
le2x L. (422)
If we match the solutions (4.8) and (4 20) at 1 = ¢, we find
Xt =xts+(3/7)tan xt . (4.23)
The rollover time 7 equals 7§, and we obtain from egs. (4.22). (4.23)
157 <xr<1.61. (4.24)

This differs from eq (4.17) by no more than 3%, indicating that eq. (4 17) gives a
reasonable estimate of the rollover time.
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5. Generation of cosmological density fluctuations

Eq. (4.17) esumates only the mean value of the rollover time. The actual value of 7
can be different from (4.17) and can fluctuate in space. This 1s precisely the effect
that gives rise to density fluctuations in the new inflationary universe [16-18]. If 87,
is the fluctuation of r on a scale characterized by wavenumber &, then at the time
when this scale re-enters the horizon [16-18§]

8p,/p~ Hé7, . (5.1)
47, can be found from
87, ~ 89,/9 (5.2)
and [16]
8¢, (1) = [k, ()] (5.3)

Here, A, (1) 1s the Fourier transform of the two-point correlation function (3.17).
A, (1)=(27) 3]A(x,z)e ox gl (5.4)

If the evolution of the field ¢ is adequately described by classical field equations,
then 1t can be shown that [16] 8¢, (1) X 4{(’) and 7, 1s independent of ¢. Estimating
87, from egs. (5.2), (5.3) at the time when the galactic scale comes out of the honzon.
one finds for that scale 8p/p ~ 50. This 1s five or six orders of magnitude too large.

Things look more encouraging 1n the cactus approximation. The fluctuation of ¢
in this approximation can be written as

3/2

8¢, (1) =(k/2m) " 1y, (1)l (5.5)
From egs. (4.8) and (4.14) we sec that as 1 — ¢, the relative fluctuation of ¢
approaches a small constant value.

@k—)— - @—cosxt,‘. (5.6)

(¢*) 8m?

It can be shown that this relation 15 approximately preserved at late stages of the
evolution when (¢?) > H2/X (see the Appendix). For (¢*) ~ 62, ¢ 1n eq. (4 26) 15
~ N/%6? and

81, ~cosxt, /27N (5.7)
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For sufficiently large scales, cos xt, = 1 and

dp,, H
_P— N 2aN/4g (58)

With reasonable values of the parameters, eq. (5.8) gives 8p, /p ~ 10 ™%, This 15 just
the value needed for the galaxy formation!

The trouble with this argument is that the cactus approximation neglects correla-
tions between different modes and can hardly be trusted in the analysis of the
fluctuations of 7. The time , at which the classical description takes over can be
estimated in the following way. The field ¢ fluctuates with amplitude ~ H on a
timescale ~ H !, and thus the fluctuation of ¢ 1s 8¢ ~ H?2. (This follows also from
eq. (3.13)). On the other hand, from eq. (4.19), the classical “ velocity™ is given by
¢ = A¢’/3H. One can expect that the transition to the classical regime occurs when ¢
becomes greater than 8¢, that is when

(*)(14) ~ A" H?. (5.9)

Assuming that 7, <1, and evaluating 87, at 1 ~ r,, we find* using egs. (5.2). (5.6).
(5.9) and (4.8)

Hor ~8¢,(14)/Hz (27) " ~0.1. (5.10)

The density fluctuations are still too large. It 1s possible to obtain 8p/p ~ 10 * for
t, > t,, but this requires ridiculously small values of A [16-18].

How can we save the inflationary universe? One possibility is to consider
N-component Higgs fields with N > 1, in which case the cactus approximation may
be rehable [12]. Perhaps a more attractive alternative 1s to consider particle models
which give a different shape of the effective potential at small ¢. The authors of refs.
[17.18] have pointed out that the density fluctuations can be made small if the
effective potential 1s sufficiently flat somewhere 1n the range H < ¢ < 0.

To illustrate this possibility, suppose that for ¢ > ¢, < o the effective potential
has the form

Vie)= —in’e’ (5.11)

with p? < H? and p > 0. A model with V(¢) like (5.11) has been recently discussed
by Dimopoulos and Georgi [19]. We first note that V() cannot keep the form (5.11)

*Eq (510) assumes that eq (4 8) applies up to 7~ ¢, It 1s possible, however, that there 15 an
intermedhate regime when ($?) changes from ~ H2/2#X /210 ~A 2*H? In that case H87, can be
greater than given by eq (510)
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up to ¢ ~ o, since otherwise the false vacuum (¢ = 0) energy 15 p, ~ Su’a? and

2
plo’
-

mp

H?=3%7Gp, ~ im < p?.

Here mp 1s the Planck mass and I have assumed that o < m,. In order to have
p? < H?, V(¢) should have a big dip at ¢ > ¢,. (The model of Ref. [19] does not
satisfy this requirement.) it will also be necessary to require that

&, > 1 /p (5.12)

A nice thing about the model (5.11) 1s that 1t describes a free field with a
tachyonic mass i,

(O-u?)e=0, (513)
and the mode functions can be found exactly [13,6]:
¥, = (i) ?Ho'?H? (k7). (5.14)

Herc 4= — H ~lexp(— Ht) and

/ p.z 1,2 ’J’z
V=(§_H2) =~ 1= , (5.15)
The asymptotic form of §, at ¢ > 1, 15

2

a0 = (112728 Yexp| 20— 1) (5 16

and analysis strmlar to that of the previous section gives

2 3H* 2;121)_
{(¢p7) = N [exp( AT 1]. (5.17)

We shall use eq (5.17) assuming that ¢ 1s sufficiently large, so that the exponenual in
the square brackets 1s much greater than one.
The fluctuation of the rollover time, §7,. can be estimated from

87 ~ 8, /D, (5.18)
where 8¢, 15 given by eq. (5.5) and @ = ({(¢*))}/*

C 3V 21,5
HSTA:(%) —exp —‘;—H") {519)

H
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We see that 8p,/p 15 small if the galactic scale comes out of the horizon at
sufficiently late ime (¢, > 3H/p?). If this happens when (¢?) ~ ¢7, then

8o/p~01H"/ue,. (5.20)

and the fluctuations have the desired magnitude 1f ¢, ~ 10°H ' /p?
If V(¢) becomes much steeper than (5.11) at ¢ > ¢,. the rollover time 1s the time 1t
takes to get from (¢?) =0 to (¢*) ~ ¢3:

Hr ~ (3H’/p*)in(pe,/H?) > (3H? /u*)In(H /p). (5.21)

where the last inequality follows from the condition (5.12). The inflation 15 suffi-
ciently large provided that H > 4p.

The concluston 1s that, depending on the parameters of the model (5.11), 8p/p can
take practically any value. including the right one. Other forms of V(¢) have been
suggested in refs. [17.18, 20). The effective potential used in refs. [18,20] 1s based on
the geometric hierarchy model of Dimopoulos and Raby [21]. This model can give
small density fluctuations, but probably fails to produce sufficient reheating (20]. In
general. to produce small density fluctuations and efficient reheating, the effective
potential must have a rather special shape, and 1t 1s not clear whether such effective
potentials can be naturally obtained in realistic models.

6. Conclusions

In this paper we have discussed the physics of quantum fluctuations in de Sitter
space for a simple model of a self-interacting scalar field, eqgs. (2.1). (2.3). We have
found the average “rollover” time 1n the new inflationary scenario:

5

r=n2(2A) YPH ! (6.1)

This 15 1n a qualitative agreement with the estimation obtained by Linde [7). (The
difference 15 only 1n the numerical coefficient )

Requining that the expansion factor, exp( H7), be sufficiently large ( Hr = 50), we
obtain a constraint on A:

A<2x107 2. (6 2)

A warning should be 1ssued that, 1n general, the results of this paper are not
directly applicable to realistic gauge theories. even 1if the effective potential at small
¢ has the form (2.3). The reason 1s that the Higgs fields in realistic theornes are
multi-component fields, and a potential like (2.3) 1s obtained by choosing some
direction 1n the group space and suppressing other degrees of freedom This 1s all
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right if one is interested in the classical evolution of the field; however, for the
analysis of quantum fluctuations one has to include all degrees of freedom.
As an example, let us consider an O( N )-symmetric model

L=19,6,0",+ i\ ($,8,)" (6.3)
where a = 1,...,N. If we pick some direction in the N-dimensional ¢-space, say,
¢,=¢(1,0,....0), (6.4)

then the Lagrangian for ¢ takes the form of eqs. (2.1), (2.3). However, quantum
fluctuations occur in all N components of ¢,, and the equation corresponding to eq.
4.7)1s

d H? 2A 2.2
d—1<¢2>='4‘;+—3ﬁ(N+2)<¢> : (6.5)

Here (¢*) = N ¢,9,). The rollover time for this model 1s

2 1/2
T=W—l—3———:|/. (6.6)
HI2(N+2)A

We note that if N 1s not too large, eq. (6.1) still gives a reasonably good
order-of-magnitude estimate of . For N = 10, 7 changes only by a factor of 0.5 Eq.
(6.6) also suggests that taking into account the suppressed degrees of freedom will
tend to decrease the magnitude of 7. The single-degree-of-freedom effective potential
for the standard SU(5) model has A ~ 0.5 {16}, and we expect HT < 72(2A) />~ 10,
which 1s not enough.

The analysis of the density perturbations resulting from the quantum fluctuations
of ¢ gives, n the cactus approximation, 8p/p ~ 10~ * — an answer one may be
tempted to believe. However, the cactus approximation neglects important correla-
tions between the modes and probably becomes unreliable for large values of (¢?).
The argument of sect. 5 suggests that the classical evolution takes over no later than
when (¢) ~ A~ ¥’ H?2 This gives 8p/p = 0.1, and thus the density fluctuations are
too large. To get around this difficulty, one can consider effective potentials of a
different shape. What one needs [17,18] is an effective potential which 1s sufficiently
flat somewhere in the range H <« ¢ < o and has a big dip near ¢ = 6. The latter 15
required for efficient reheating [20].

I am grateful to Larry Ford for stimulating discussions. This work was supported
in part by the National Science Foundation under Grant # PHY-8206202.
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Appendix

This appendix discusses the evolution of {¢?) when (¢*) > H?/A n the cactus
approximation. In thus regime the effect of space-time curvature 1s neghgible, and we
can use the Minkowsky space d’alambertian in eq. (4.15). The growth of (¢*) 1s due
to unstable modes with wavelengths X > (—m2;)!/?, where m?; = —3A(¢*). We
shall assume that the dominant contribution to (¢} is given by the modes with
X > (—m2;)"/% then

(8% > ((Ve)'). (A.1)

With this assumption, eq. (4.15) takes the form
d? .
57<¢2>=2<¢2>+6>\<¢2>2- (A.2)

Taking the expectation value of the energy conservation law, T , = 0. we obtain
also

($*) — IN(¢?)? =2E = const. (A3)

Egs. (A.2) and (A.3) give the following equation for (¢’ ):
dZ
F<¢2> =9A(¢*)? +4E. (A .4)
1

At large values of (¢?) we can neglect the constant 4E; then eq. (A 4) has a solution

(¢%) = m . (A.5)
In the same approximation, the mode functions satisfy the equation
Vi = IO, =210 = 1) Yy (A-6)
which has solutions with ¢, « (¢, — r)? and ¢, « (£, — ) ~". Thus,
Yo=A, (1g— 1) + B (15— 1), (A7)
and
¥l —const  ast{—1,. (A.8)

(¢*)
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The weak point of this analysis is the assumption (A.1) which I cannot rigorously
Justify. I have studied the same problem taking eq. (2.13). (2 14) as a starting point.
with an appropnate cutoff in the integral over A The result 1s the same. cgs. (A.5)
and (A.8) It should be emphasized that egs. (A.5) and (A.8) apply only in the cactus
approximation. As explained in sect. 5. this approximation becomes unrehable at
large values of (¢*).
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